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Abstract

The cardinal aΣ1
1

is introduced. This is defined as the minimum quan-
tity of analytic (i,e, Σ1

1) almost disjoint families needed in such a way that
its union is a MAD family. This is a natural generalization of the cardinal
aB introduced by J. Brendle and Y. Khomskii in [3]. In this paper, we
present a proof, in ZFC, of the inequality h ≤ aΣ1

1
, answering positively

a conjecture made by D. Raghavan.
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1 Introduction
Given two sets A,B ∈ [ω]ω, we say that they are almost disjoint (a.d.), if
A ̸= B implies |A ∩ B| < ℵ0. An infinite family A ⊆ [ω]ω is a.d. if all of its
elements are a.d. Moreover, we say that A is a MAD family if it is a maximal
a.d. family1. The study of definable subfamilies of P(ω) has existed since the
birth of set theory itself, and MAD families have been a fruitful object of study
in this research line. It makes sense because identifying P(ω) with 2ω, we can
talk about the definability of subfamilies in P(ω) concerning Borel or projective
hierarchies. The first result regarding the definability of MAD families is due to
A.R.D Mathias. He proved, in [11], that there are no analytic (i,e, Σ1

1) MAD
families. More recently, in [19], Törnquist gave a new proof of this theorem, and
in an unpublished paper, C. Conely and B. Miller gave a shorter proof using the

AMS classification: 03E15, 03E10, 03E17, 03E05.
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1The existence of such families follows easily from Zorn’s Lemma. However, there are no

MAD families in Solovay’s model [16].
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ideas from [19]. In contrast, A. Miller proved the existence of Σ1
2-definable MAD

families in L [12]. A key part of his construction is that L has a Σ1
1-definable

well order of the reals.

Closely related to questions of the definability of MAD families are problems
concerning MAD families that can be expressed as the union of definable almost
disjoint families. In [3], J. Brendle and Y. Khomskii constructed a MAD family
A as the union of ℵ1 Borel almost disjoint families {Bα}α<ℵ1

, using this con-
struction to answer a question posed by S.D. Friedman and L. Zdomskyy in [5].

Specifically, Friedman and Zdomskyy asked whether it is consistent to have
a Σ1

2 MAD family together with b > ℵ1. Recall that increasing the bounding
number b requires adjoining dominating reals to the ground model. However, it
is well known that adding a dominating real destroys all MAD families from the
ground model. To avoid this, Brendle and Khomskii designed their family A so
that the union of the reinterpretations of the Borel families {Bα}α<ℵ1

remains
maximal in the forcing extension that they used.

Motivated by this, they isolated the cardinal characteristic aB , defined as
follows:

Definition 1. ([3]) Let κ be an uncountable cardinal.

1. A MAD family A ⊆ [ω]ω is called a κ-Borel MAD family if there are, for
each α < κ, Borel a.d. families Aα, such that A =

⋃
α<κ Aα.

2. aB is the least cardinal κ for which there exists a κ-Borel MAD family.

Inspired by this definition, it is natural to generalize to arbitrary pointclasses
Γ (e.g. Γ is the collection of closed subsets, Fσ subsets, or analytic subset, etc).

Definition 2. Let κ be an uncountable cardinal and Γ pointclass on P(ω).

1. A MAD family A ⊆ [ω]ω is called a κ-Γ MAD family if there are, for each
α < κ, a.d. families in the class Γ, Aα, such that A =

⋃
α<κ Aα.

2. aΓ is the least cardinal κ for which there exists a κ-Γ MAD family.

Theorem 3 (Main theorem). h ≤ aΣ1
1
.

D. Raghavan conjectured that h ≤ aB , and since aΣ1
1
≤ aB , the previous

theorem confirms it. Recall that the distributivity number, the cardinal h, is
defined as follows:

Definition 4. 1. Given a family D ⊆ [ω]ω we say that D is:

Open: If for every B ∈ D and A ∈ [ω]ω, we have that A ⊆∗ B2, implies
A ∈ D.

Dense: If for every B ∈ [ω]ω, there is A ∈ D such that A ⊆ B.
2Recall that A ⊆∗ B means that A \B is finite.
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2. The cardinal h is defined as the minimum size of a family of open and
dense sets in [ω]ω with an empty intersection.

The proof of Theorem 3 relies on two central tools: The first one is the ideas
of D. Schrittesser and A. Törnquist, to give a positive answer to a long-standing
unsolved problem of Mathias. To be precise, to prove that, under ZF+DC+R-
Unif+“all sets have the Ramsey property”, there are no infinite MAD families
[16]. The second one is the characterization of the cardinal h established by S.
Plewik in [13] (see also [7]).

Theorem 5 (S. Plewik). h = cov(R0)
3.

Moreover, as D. Raghavan has pointed out to us (private communication),
our result implies that under PFA(S)[S], aΣ1

1
= ℵ2. This is because he and T.

Yorioka showed in [15] that under this hypothesis h = ℵ2.
Before we give a proof of Theorem 3, we must introduce some necessary

tools. In the second part of the paper, we will develop those tools, leaving the
proof of the main theorem for the last section. Finally, we will point out some
results that are already known about the cardinals aΓ, more precisely, when Γ
is the class of Borel or closed sets.

Theorem 6. 1. (Mathias) ℵ1 ≤ aB ≤ a (see [11]).

2. (Raghavan and Shelah) d = ℵ1 → aclosed = ℵ1 (see [14]).

3. (Raghavan) t ≤ aB (unpublished).

4. (Brendle and Khomskii) It is consistent that aB < b (see [3]).

5. (Brendle and Raghavan) ℵ1 = b < aclosed = ℵ2 is consistent (see [2]).

6. (Törnquist) p ≤ aB (see [19]).4

7. (Guzmán and Kalajdzievski) It is consistent that ℵ1 = u < aclosed (see
[6]).

The definitions of the almost disjoint number a, dominating number d,
bounding number b, tower number t, pseudointersection number p and ultrafilter
number u, can be found in [1].

2 Preliminaries
In this section, we will introduce all of the necessary notions to follow the proof
of our main theorem. We will do our best to keep the paper as self-contained as
possible. Our notation is mostly standard, and the reader can consult [1, 9, 7]
for a deeper development of the concepts used in the paper.

3See the paragraph after Definition 7 for the definition of cov(R0).
4By the celebrated result of Malliaris-Shelah [10], this result is the same as Raghavan’s

unpublished one. However, Raghavan’s result was shown before it was known that p = t.
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Let A ∈ [ω]ω and s ∈ [ω]<ω. By s ⊑ A we mean that s is an initial seg-
ment of A, that is, s ⊆ A ⊆ s ∪ A \ s̄ where s̄ := sup{k + 1 : k ∈ s}. [s,A]ω

stands for the family {X ∈ [ω]ω : s ⊆ X ⊆ s ∪ A \ s̄}. It is easy to see that
the sets [s,A]ω form a base for a topology, and that topology is known as the
Ellentuck’s topology. In particular, note that ⟨s⟩ := [s, ω]ω is a base for the
classical Polish topology of [ω]ω. The following definition is due to J. Silver [17].

Definition 7. A family C ⊆ [ω]ω is completely Ramsey if for every s ∈ [ω]<ω

and A ∈ [ω]ω, there is B ∈ [A]ω such that C ∩ [s,B]ω = ∅ or [s,B]ω ⊆ C.

If in the previous definition, for every A ∈ [ω]ω and s ∈ ω<ω, we al-
ways find B ∈ [A]ω such that C ∩ [s,B]ω = ∅, we will say that C is a com-
pletely Ramsey-null set. It is easy to see that the set R0 := {C ⊆ [ω]ω :
C is completely Ramsey-null} forms an ideal in P([ω]ω). That is, it contains
the finite families of infinite sets, it is closed under taking subsets and finite
unions, and does not contain [ω]ω. Moreover, it is a σ-ideal, i.e., it is closed
under countable unions. Recall that cov(R0) denotes the minimum cardinal κ
for which there are κ-many elements in R0 whose union covers [ω]ω.

The principal feature of Ellentuck’s topology is that it nicely characterizes com-
binatorial notions like being a completely Ramsey set or a completely Ramsey-
null set in topological terms.

Theorem 8 (Ellentuck’s Theorem [4, 18]). For every A ⊆ [ω]ω we have:

1. A is nowhere dense with respect to the Ellentuck topology if, and only if,
A is completely Ramsey-null.

2. A has the Baire property with respect to the Ellentuck topology if, and only
if A is completely Ramsey.

Recall that in a topological space (X, τ), Y ⊆ X has the Baire property if
there is an open set G ∈ τ such that Y△G is meager5. Since the Baire property
is closed under Souslin operation, and every classical closed set is also closed
in Ellentuck’s topology, classical analytic sets have the Baire property in El-
lentuck’s topology and, therefore, classical analytic sets are completely Ramsey
sets.

The following result is a kind of fusion lemma for the family of completely
Ramsey sets.

Lemma 9. Let {Rn}n∈ω be a countable family of completely Ramsey sets, M ∈
[ω]ω and t ∈ [ω]<ω. Then:

1. There exists a set N ∈ [M \ t̄]ω with increasing enumeration {nk : k ∈ ω}
such that, for every k ∈ ω and s ⊆ {n0, . . . , nk} we have that [t∪ s,N ]ω ⊆
Ri or [t ∪ s,N ]ω ∩Ri = ∅ for every i ≤ max(s).

5Recall that △ denotes the symmetric difference.
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2. Assume that for each n ∈ ω, Rn is closed under =∗. Then there exists
a set N ∈ [M \ t̄]ω with increasing enumeration {nk : k ∈ ω} such that,
for every k ∈ ω and s ⊆ {n0, . . . , nk} we have that [t ∪ s,N ]ω ⊆ Ri or
[t ∪ s,N ]ω ∩Ri = ∅ for every i ≤ k.

3. Let N the set given by 2. and i < ω. Then [t,N ]ω ⊆ Ri if and only if
there exists s ∈ [N ]<ω such that [t ∪ s,N ]ω ⊆ Ri. In particular, for every
i ∈ ω, either [t,N ]ω ⊆ Ri or [t,N ]ω ∩Ri = ∅.

Proof. 1. We are going to build the set N recursively. Let n0 := minM \ t̄.
Since for each i ≤ n0, the sets Ri are completely Ramsey, we can choose
a decreasing sequence {N i

0}i≤n0
of elements in [M \ t̄]ω such that [t ∪

{n0}, N i
0] ⊆ Ri or [t ∪ {n0}, N i

0] ∩Ri = ∅. Let N0 := Nn0
0 . It is clear that

for all i ≤ n0, [t ∪ {n0}, N0] ⊆ Ri or [t ∪ {n0}, N0] ∩Ri = ∅.

Assume that we already have a decreasing sequence of infinite sets Nk ⊆
Nk−1 ⊆ · · · ⊆ N0 and an increasing sequence n0 < n1 < · · · < nk

such that for every s ∈ P({n0, . . . , nk}), if max(s) = nj , then for ev-
ery i ≤ nj we have that [t ∪ s,Nj ]

ω ⊆ Ri or [t ∪ s,Nj ]
ω ∩ Ri = ∅. Let

nk+1 = min(Nk \ (nk + 1)). Let {sj : j ∈ 2k+1} be an enumeration of
P({n0, . . . , nk}). Since for every i ≤ nk+1 the set Ri is completely Ramsey,
we can construct a decreasing sequence

N
(2k+1−1,nk+1)
k ⊆ · · · ⊆ N

(2k+1−1,0)
k ⊆ N

(2k+1−2,nk+1)
k · · · ⊆ N

(0,0)
k ⊆ Nk

such that for every j ∈ 2k+1 and i ≤ nk+1 we have that [t ∪ sj ∪
{nk+1}, N (j,i)

k ]ω ⊆ Ri or [t ∪ sj ∪ {nk+1}, N (j,i)
k ]ω ∩ Ri = ∅. Let Nk+1 :=

N
(2k+1−1,nk+1)
k . Pick s ∈ P({n0, . . . , nk}) and i ≤ nk+1. Take j ∈ 2k+1

such that s = sj . Then, as [t∪s∪{nk+1}, Nk+1]
ω ⊆ [t∪sj∪{nk+1}, N (j,i)

k ]ω

we obtain that [t∪s∪{nk+1}, Nk+1]
ω ⊆ Ri or [t∪s∪{nk+1}, Nk+1]

ω∩Ri =
∅. Finally, take N := {nk : k ∈ ω}. We claim that this N satisfies the re-
quirements. Indeed, let k ∈ ω, s ∈ P({n0, . . . , nk}) and nj := max(s). By
the way in which N was constructed, we get [t∪ s,N ]ω ⊆ [t∪ s,Nj ]

ω. So,
for every i ≤ nj , we conclude that [t∪ s,N ]ω ∩Ri = ∅ or [t∪ s,N ]ω ⊆ Ri.

2. Let N the set given by 1. and take k ∈ ω, s ∈ P(n0, . . . , nk) and i ≤ k.
If i ≤ max(s), the conclusion follows by the definition of N . Assume
that max(s) < i. We know that [t ∪ s,Ni]

ω ⊆ Ri or [t ∪ s,Ni] ∩ Ri = ∅.
Assume that the first condition happens. Let X ∈ [t ∪ s,N ]ω and define
Y := X \ {nr : max(s) < r ≤ i}. So, Y ∈ [t ∪ s,Ni]

ω ⊆ Ri. But, since Ri

is closed under =∗, and X =∗ Y , we get X ∈ Ri. So, [t∪ s,N ]ω ⊆ Ri. On
the other hand, if [t ∪ s,Ni]

ω ∩Ri = ∅ happens, with the same argument
as before, we can conclude that [t ∩ s,N ]ω ∩Ri = ∅.

3. The proof of (→) is trivial. Now, for (←), assume that [t ∪ s,N ]ω ⊆ Ri.
Since Ri is closed under =∗, it is easy to conclude that [t,N ]ω ⊆ Ri
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Definition 10. ([16]) Let {An}n∈ω be a partition of ω in infinite sets. For any
Y ∈ [ω]ω we define

Ŷ := {ayn
(yn+1) : n ∈ ω}

Where {yn : n ∈ ω} and {ak(i) : i ∈ ω} are the increasing enumerations of Y
and Ak respectively.

Notice that |Ŷ ∩ An| ≤ 1 for every n ∈ ω. Moreover, if X,Y ∈ [ω]ω and
X =∗ Y , then X̂ =∗ Ŷ . Also note that the definition of Ŷ depends of the chosen
partition {An}n∈ω. However, since we will only treat one partition at a time,
we decide to drop the mention of it in the notation. Moreover, observe that we
can also define ŝ for every s ∈ [ω]<ω.

Lemma 11. Let {An}n∈ω be a partition of ω in infinite sets. The function
g : [ω]ω → [ω]ω given by g(Y ) := Ŷ is continuous.

Proof. Let Y ∈ [ω]ω and t ⊑ Ŷ . So, we can find s ⊑ Y such that s = {y0, . . . , yn}
and t = {ay0(y1), . . . , ayn(yn+1)}. It is clear that ŝ = t, g−1(⟨ŝ⟩) ⊇ ⟨s⟩ and
Y ∈ ⟨s⟩. So, continuity follows.

A partially ordered set (T,≤) is called a tree if for every t ∈ T the set
{s ∈ T : s ≤ t} is well-ordered. A maximal totally-ordered subset of T will be
called a branch, and the maximal elements of T will be called leaves. A subtree
of T is a set S ⊆ T that is downwards-closed under ≤. Given s ∈ T , we can
define the subtree Ts := {t ∈ T : t ≤ s ∨ s ≤ t}. Clearly ω<ω (the set of finite
sequences of natural numbers) endowed with the order s ≤ t if, and only if,
s ⊆ t is a tree. Now, if T ⊆ ω<ω is a subtree, by [T ] we denote the set of its
branches. It is well-known that F ⊆ ωω is closed if, and only if, F = [T ] for
some subtree T ⊆ ω<ω. Finally, by a classical result from descriptive set theory
[8, C. II] we have:

Theorem 12. Let X be a Polish space (i.e., completely metrizable and separa-
ble) and A ⊆ X an analytic set. Then there is a continuous and onto function
f : ωω → A.

We finalize this section with a result due to Törnquist [19], which plays an
important role in proving Theorem 3; we prove it here for the reader’s conve-
nience.

Lemma 13. Let T ⊆ ω<ω be a tree and f : [T ] → [ω]ω continuous such that
f([T ]) is an almost disjoint family. If T is such that |f([T ])| ≥ 2, then there
exists n ∈ ω and s, t ∈ T such that

∀A ∈ f([Ts])∀B ∈ f([Tt])(A ∩B ⊆ n).

Proof. Let A,B ∈ f([T ]) such that A ̸= B. Take k ∈ ω such that A∩k ̸= B∩k.
By the continuity of f , we can find a, b ∈ [T ] and i ∈ ω such that f(a) =
A, f(b) = B, ∀A′ ∈ f(⟨a↾i⟩)(A∩k = A′∩k) and ∀B′ ∈ f(⟨b↾i⟩)(B∩k = B′∩k).
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Assume that the Lemma is not true. Fix n ∈ ω and assume that for ev-
ery extension s, t ∈ T of a↾i and b↾i, respectively, there exists A′ ∈ f([Ts])
and B′ ∈ [Tt] such that A′ ∩ B′ ⊈ n. So, we can find a′, b′ ∈ [T ] such that
s ⊆ a′, t ⊆ b′, f(a′) = A′ and f(b′) = B′. Using the continuity of f again, we
can get k sufficiently large such that ∀X ∈ f([Ta′↾k])∀Y ∈ f([Tb′↾k])(X∩Y ⊈ n).

Using inductively the argument in the paragraph above, we find increasing se-
quences {sn}n∈ω,{tn}n∈ω ⊆ T of extensions of a↾i and b↾i such that ∀X ∈
f([Tsn ])∀Y ∈ f([Ttn ])(X ∩ Y ⊈ n). But note that f(

⋃
n∈ω sn) and f(

⋃
n∈ω tn)

are neither equal nor almost disjoint. We have arrived at the desired contradic-
tion.

3 Proof of the main theorem
This section is exclusively devoted to the proof of our main result, i,e. h ≤ aΣ1

1
.

Proof. (Theorem 3) Let κ < h and {Aα}α<κ a collection of analytic almost
disjoint families such that A :=

⋃
α<κ Aα is an almost disjoint family. We will

show that A is not a MAD family. Without loss of generality we can assume
that An := {An} for every n ∈ ω where {An : n ∈ ω} is a partition of ω in
infinite sets. For every α ≥ ω, by Theorem 12, we can find a continuous and
onto function fα : ωω → Aα.

Fix α ≥ ω, take T := ω<ω, f := fα, and define the set

Nα := {M ∈ [ω]ω : ∃A ∈ Aα(|A ∩ M̂ | = ℵ0)}

where M̂ is defined like in Definition 10 using the partition {An : n ∈ ω}.

Lemma 14. The set Nα is analytic.

Proof. Let h : [ω]ω ×Aα → P(ω) such that h(M,A) := M̂ ∩ A. By Lemma 11,
h is continuous and this implies that h−1([ω]ω) is a Borel set. Note that Nα is
the projection in the first coordinate of h−1([ω]ω). So, Nα is analytic.

Using the previous lemma and Ellentuck’s theorem, we conclude that Nα is
completely Ramsey. Moreover, we have the following:

Claim 15. Nα is a completely Ramsey-null set.

Proof. Assume, towards a contradiction, that there is M ∈ [ω]ω and t ∈ [ω]<ω

such that [t,M ]ω ⊆ Nα. For every X ∈ [t,M ]ω we define the set

T (X) := {l ∈ T : ∃A ∈ f([Tl])(|X̂ ∩A| = ℵ0)}.

T (X) is a non-empty tree without leaves (i.e., is well-founded).

Subclaim 16. There exists N ∈ [M \ t̄]ω and S ⊆ T subtree such that, if
P ∈ [t,N ]ω, then T (P ) = S.
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Proof. Given l ∈ T , we consider the set

W (l) := {X ∈ [t,M ]ω : l ∈ T (X)}.

Again, it is easy to show that W (l) is analytic, hence, W (l) is completely Ram-
sey for every l ∈ T . Moreover, let X ∈W (l) and Y ∈ [t,M ]ω with X =∗ Y . So,
X̂ =∗ Ŷ which implies that W (l) is closed under =∗. Let T := {ln : n ∈ ω} be
an enumeration of T . By Lemma 9, we can choose N ∈ [M \ t̄]ω such that for
every i ∈ ω, [t,N ]ω ⊆W (li) or [t,N ]ω ∩W (li) = ∅.

Let S := {l ∈ T : [t,N ]ω ⊆ W (l)}. S is a subtree of T , because if l, s ∈ T
and l ⊆ s, then W (s) ⊆ W (l). We claim that N and S are the required sets.
Indeed, if P ∈ [t,N ]ω, then:

1. T (P ) ⊆ S : Let l ∈ T (P ). Hence P ∈ W (l) which implies that [t,N ]ω ∩
W (l) ̸= ∅. By how N was chosen, we have that [t,N ]ω ⊆ W (l), and this
implies l ∈ S.

2. S ⊆ T (P ) : If l ∈ S, [t,N ]ω ⊆ W (l) by definition of S. Hence P ∈ W (l),
thus l ∈ T (P ).

Let N and S be as in the previous sub-claim. Since S has the form T (P )
for every P ∈ [t,N ]ω, we conclude that S does not have leaves and T (P ) = {l ∈
T : ∃A ∈ f([Sl])(|X̂ ∩A| = ℵ0)}. Additionally, we have the following:

Subclaim 17. |f([S])| = 1.

Proof. To get a contradiction, assume that |f([S])| ≥ 2. By Lemma 13 we can
find m ∈ ω and s, l ∈ S such that

∀A ∈ f([Ss])∀B ∈ f([Sl])(A ∩B ⊆ m).

Let W := (
⋃
f([Ss])) \m and consider the 2-coloring c : [N ]2 → 2 defined by:

c({i, j}) :=
{

1 if ai(j) ∈W (i < j)
0 otherwise

By the Ramsey’s Theorem we can find P ∈ [N ]ω such that c ↾ [P ]2 is monochro-
matic. We have two cases:

Case 1: If P is 1-monochromatic, we claim that P̂ t ⊆∗ W where P t := t ∪ P .
If this was not true and {pn : n ∈ ω} is the increasing enumeration of
P , we get apn

(pn+1) /∈ W for some n ∈ ω. But this is a contradiction
because c({pn, pn+1}) = 1. Now, given an arbitrary B ∈ f([Sl]), we have
P̂ t ∩ B ⊆∗ W ∩ B = ∅ which is a contradiction because l ∈ S = T (P t).
So, this case is impossible.
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Case 2: If P is 0-monochromatic, we can conclude that P̂ t ∩ W =∗ ∅ using an
argument like the previous one. This contradicts that s ∈ S = T (P ).

From this, we conclude that |f([S])| = 1.

Let A ∈ f([T ]) such that f([S]) = {A}. Since A ∩An is finite for all n ∈ ω,
we can find K ∈ [N ]ω such that |K̂t ∩ A| ≤ |t|. Moreover, Kt ∈ [t,N ]ω ⊆ Nα,
so we can find B ∈ f([T ]) such that |B ∩ K̂t| = ℵ0. But note that T (Kt) = S
so, we must have that B ∈ f([S]) = {A} which is a contradiction. This allows
us to get that Nα must be a completely Ramsey-null set.

Now, as κ < h = cov(R0), we can find X ∈ [ω]ω \ (
⋃

ω≤α<κ Nα). So, for
every ω ≤ α < κ and A ∈ fα[ω

ω], we have that |A ∩ X̂| < ℵ0. Moreover,
|X̂ ∩An| ≤ 1 for every n ∈ ω, so A ∪ {X̂} is an almost disjoint family, i,e. A is
not maximal.

Acknowledgments: We thank Diego Mejía, Dilip Raghavan, and Michael
Hrusak for their valuable comments and remarks.
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